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H(curl) AUXILIARY MESH PRECONDITIONING

TZANIO V. KOLEV, JOSEPH E. PASCIAK, AND PANAYOT S. VASSILEVSKI

Abstract. This paper analyzes a two–level preconditioning scheme for H(curl)
bilinear forms. The scheme utilizes an auxiliary problem on a related mesh that is
more amenable for constructing optimal order multigrid methods. More specifically,
we analyze the case when the auxiliary mesh only approximately covers the original
domain. The latter assumption is important since it allows for easy construction
of nested multilevel spaces on regular auxiliary meshes. Numerical experiments
in both two and three space dimensions illustrate the optimal performance of the
method.

1. Introduction

This paper analyzes a two–level preconditioning scheme for the H(curl) problem
previously developed for elliptic finite element problems (cf., [5], [20], [7]). A main
motivation for such an approach is to be able to solve finite element problems posed
on unstructured meshes, by methods available for discretizations of the same PDE
on a related auxiliary mesh for which preconditioners (for example of multigrid type)
are easier to construct. The two–level auxiliary mesh scheme, in combination with
a related domain embedding technique (or “fictitious” domain methods, going back
as early as to [9], [3]) may be seen as a more practical motivation for the kind of
study we have taken in the present paper. The specific problem we consider comes
from Maxwell equations and leads to a bilinear form on the space H(Ω; curl) for a
3D polyhedral domain Ω. For simplicity, we take Ω to be simply connected with a
connected boundary. Since the resulting form is not equivalent to a standard second
order elliptic one, the analysis we present is a bit more involved, a main part of which
is to establish that a discrete de Rham diagram commutes for two sequences of non-
related finite element spaces and the natural interpolation operators associated with
them.

Our result is closely related to those of a recent paper [14] dealing with the same
topic. The difference is that our analysis is more general; in particular, it applies to
the lowest order Nédélec space whereas the result in [14] substantially relies on the
fact that the auxiliary Nédélec space contains an H1–conforming subspace. Another
difference is that we provide experiments in three dimensions. A main ingredient in
the implementation is the construction of the mapping ΠQ

h that relates the auxiliary
mesh Nédélec space QH with the original one Qh (for more details see Section 3).
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As it turned out, the newly proposed multilevel method by Hiptmair and Xu in [15]
utilizes a similar operator that however relates a H1–conforming space Sh on the same
mesh with the original Nédélec space Qh. That is, the method in [15] does not require
remeshing the domain; it uses a H1–conforming auxiliary space on the original mesh,
instead. Our present implementation of ΠQ

h is somewhat involved since it is computed
as a mapping from a finite element space defined on a different (auxiliary) mesh into
a space on the original mesh. However, it enabled us to easily implement and test the
performance, both in serial and in parallel (see [17] and [16]) of a modified version of
the method in [15]. Combining both approaches (from the present paper and [15])
we can allow auxiliary meshes that do not completely cover the original domain and
either use auxiliary Nédélec spaces or auxiliary H1–conforming spaces on them to
construct efficient auxiliary mesh/space preconditioners.

The remainder of the paper is structured as follows. In Section 2 we pose the prob-
lem, define the two–level preconditioning scheme in general terms, and give details
about the auxiliary mesh and space. In Section 3 the main properties of the mapping
ΠQ

h are stated. Then, in Section 4 the so–called Hiptmair smoother is reviewed. Sec-
tion 5 contains the proof of our main theorem, The commuting property of the discrete
de Rham diagram and a related L2-stability of the natural interpolation operators
associated with it, are the main subject of Section 6. Finally, numerical experiments
both in two and three space dimensions illustrating the theory are presented in Section
7.

2. The H(curl) problem and its two–level preconditioning

We shall denote L2(Ω) to be the space of vector functions on Ω whose components
are in L2(Ω). For scalar and vector functions, we shall use (·, ·) to denote the inner
product both in L2(Ω) and L2(Ω). The corresponding norm will be denoted ‖ · ‖0

while the norm on H1(Ω) and H1(Ω) ≡ H1(Ω)3 will be denoted ‖ · ‖1.
We consider the following bilinear form

A(u,v) = (u,v) + (∇× u,∇× v),

for functions u,v in H(Ω; curl).
We assume that Ω is triangulated by a quasi-uniform mesh Th consisting of tetra-

hedrons of size h. Let Pr be the space of polynomials of degree at most r and Pr

denote P 3
r . We associate with Th the H0(Ω; curl)–conforming Nédélec space Qh of

order r. On each element K ∈ Th, functions in Qh are polynomials of degree at most
r + 1 of the form

P(x) = Q(x) + R(x)

where Q ∈ Pr and R is a homogeneous vector polynomial of degree r + 1 satisfying
R · x = 0 for all x ∈ R3.

The form A(., .) restricted to Qh × Qh defines a symmetric and positive definite
operator Ah, i.e., for v ∈ Qh, Ahv is the unique function in Qh satisfying

(2.1) (Ahv, θ) = A(v, θ) for all θ ∈ Qh.

Our goal in this paper is to construct a two-level preconditioner Bh for Ah which
utilizes an auxiliary mesh TH obtained by using a mesh whose elements consist of
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the elements of a uniform mesh which are contained in Ω (see Figure 1). Such a
mesh does not fit the domain Ω but is a reasonable approximation to it. Multilevel
algorithms are easy to set up for this mesh if we take the original H−mesh to be a
geometrically refined uniform grid. Let QH denote the Nédélec space associated with
the mesh TH of functions in H0(ΩH ; curl) where ΩH = ∪T , T ∈ TH , and T ⊂ Ω. By
extension by zero, we can consider functions in QH as a subset of H0(Ω; curl).

Figure 1. Example of an auxiliary mesh TH (in red) embedded in the
original triangular domain Ω.

We assume that the meshes Th and TH are roughly of the same size, i.e., C0h ≤
H ≤ C1h and denote that with h ' H. Here and in the remainder of this paper, C,
with or without subscript, denotes a generic positive constant which is independent
of h.

The resulting preconditioner Bh involves smoothing on Qh and an auxiliary pre-
conditioner BH for the problem on QH (see Remark 5.1). Specifically, the two–level
operator Bh, is defined by

(2.2) Bh = Rh + ΠQ
h BH

(
ΠQ

h

)T

,

where Rh is the smoothing operator on Qh and BH denotes a multilevel preconditioner
on QH . Here ΠQ

h denotes the natural interpolation operator associated with the

Nédélec space Qh and (ΠQ
h )T denotes its L2(Ω) adjoint. The construction and analysis

of geometric multigrid preconditioners BH for the problem on QH (when the mesh
of TH fills Ω) has been well researched [12, 11, 2, 13]. It results in an operator
BH : QH → QH satisfying

(2.3) c0A(v,v) ≤ (B−1
H v,v) ≤ c1A(v,v) for all v ∈ QH

with constants c0, c1 independent of H. We stress the fact that our result holds even
when the elements of TH do not fill Ω (but approximate it of order H ' h). Our
numerical experiments clearly support these findings.

From (2.3) and the fact that Bh is an additive algorithm, the analysis of Bh reduces
to that of the preconditioner with the exact solve on QH , i.e.,

(2.4) B̃h = Rh + ΠQ
h A−1

H

(
ΠQ

h

)T

.

Here AH is the operator corresponding to A(·, ·) on QH (analogous to (2.1)).
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The following well known identity (cf., e.g., [19], Lemma 1 on p. 154) holds: For
vh ∈ Qh,

(2.5) (B̃−1
h vh,vh) = inf

vh=wh+ΠQ
h vH

{
(R−1

h wh,wh) + AH(vH ,vH)
}

.

The infimum is taken over all decompositions of the above form with wh ∈ Qh and
vH ∈ QH .

3. The analysis of ΠQ
h .

In this section, we derive some properties of ΠQ
h , specifically, we need to check how

if behaves when applied to functions in QH . Actually, we shall have to deal with all
of the corresponding operators which appear in the de Rham sequence. Specifically,
we denote by Sh the functions in H1

0 (Ω) whose restriction to K ∈ Th are in Pr. We
also denote the Raviart-Thomas space Rh to be the set of functions in H0(Ω; div)
whose restriction to K ∈ Th are polynomials of the form

P(x) = Q(x) + R(x)x

where Q ∈ Pr and R is a homogeneous polynomial of degree r. We then have the
exact sequence

0 −−−→ Sh
∇−−−→ Qh

∇×−−−→ Rh.

The analogous spaces on the mesh TH are denoted SH , QH and RH . These have zero
nodal components on the boundary of ΩH and are extended by zero to Ω.

Along with the spaces Sh, Qh and Rh, there are natural interpolation operators
(see, e.g., [8, 10]) ΠS

h , ΠQ
h and ΠR

h . These operators are defined for sufficiently smooth

functions, e.g., ΠS
h is defined on functions in H1+s(Ω) for any s > 0. ΠQ

h is defined
for functions v ∈ Hs(Ω) for s > 1/2 satisfying ∇× v ∈ Lp(Ω) for p > 2 [1]. Finally,
ΠR

h is defined for functions v ∈ Hs(Ω) with s > 0 satisfying ∇ · v ∈ Lp(Ω) for p > 2.

From the above discussion, it is not clear that the interpolation operator ΠQ
h is

even well defined on QH . That this is the case is given by the following theorem
whose proof appears later.

Theorem 3.1. The interpolation operators ΠS
h , ΠQ

h and ΠR
h are well–defined on SH ,

QH and RH . Furthermore, they are stable, respectively, in the L2(Ω) and L2(Ω)
norms on these spaces and the following diagram commutes:

(3.1)

SH
∇−−−→ QH

∇×−−−→ RH

ΠS
h

y ΠQ
h

y ΠR
h

y
Sh

∇−−−→ Qh
∇×−−−→ Rh

As a consequence one gets the following stability result:

Corollary 3.1. For u ∈ QH ,

‖∇ ×ΠQ
h u‖0 = ‖ΠR

h (∇× u)‖0 ≤ C‖∇ × u‖0,

that is, ΠQ
h is stable in the H(Ω; curl)-norm on QH .
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Remark 3.1. The proof of the above theorem actually shows that,

‖ΠQ
h wH‖0,K ≤ C‖wH‖0, bK , for all wH ∈ QH .

and
‖ΠS

hvH‖0,K ≤ C‖vH‖0, bK , for all vH ∈ SH .

Here K is a given element from Th and K̂ is a union of TH elements that intersect
K.

Let vH be in SH . Set v̄H be the mean value of vH on K̂ if K̂ ∩ ∂Ω = ∅, otherwise,
set v̄H = 0. We note that

(3.2) ‖vH − v̄H‖0, bK ≤ Ch‖vH‖1, bK .

Such inequalities for clusters K̂ which are star shaped with respect to a ball are given
in [6]. A more general argument is given in [5]. We then have

‖vH − ΠS
hvH‖0,K ≤ C‖vH − v̄H‖0,K + ‖πS

h (vH − v̄H)‖0,K ≤ Ch‖vH‖1, bK
where we used the above remark and (3.2) for the last inequality. The inequality

‖vH − ΠS
hvH‖0 ≤ Ch‖vH‖1

follows by summation. Finally, using the Clement projector and inverse inequalities
gives

(3.3) ‖v − ΠS
hv‖0 + h‖ΠS

hv‖1 ≤ Ch‖v‖1 for all v ∈ SH .

This estimate is non-standard in that it fails to hold for general H1 functions as the
nodal values are not well defined there.

Also, if zh ∈ Sh ≡ S3
h then

(3.4) ‖zh −ΠQ
h zh‖0 ≤ Ch‖zh‖1

and, for K ∈ Th,

(3.5) ‖ΠQ
h zh‖0,K ≤ C‖zh‖0,K .

The inequality (3.4) depends on zh being piecewise polynomial on the h-mesh while
(3.5) follows from a simple scaling argument. Finally, (3.4) and an inverse inequality
(when applied to H) implies

(3.6) ‖ΠQ
HzH‖H(Ω;curl) ≤ C‖zH‖1 for all zH ∈ SH .

4. The Hiptmair smoother

We can now define the so–called “Hiptmair” smoother. Let {θj}M
j=1 be a nodal basis

for Sh and {φk}N
k=1 be the nodal basis for Qh. We consider the set {Θi} = {φj}∪{∇θj}

and define the one dimensional subspace Qh,i to be the span of Θi, i = 1, . . . , N +M .
We let Qh,i and Ph,i respectively denote the L2(Ω) and A(·, ·) projectors onto Qh,i.

The Hiptmair smoother is defined to be the additive smoother associated with these
spaces, i.e.,

Rh =
N+M∑
i=1

A−1
h,iQh,i.



6 TZANIO V. KOLEV, JOSEPH E. PASCIAK, AND PANAYOT S. VASSILEVSKI

Here Ah,i : Qh,i → Qh,i is defined by

(Ah,iv, w) = A(v, w) for v, w ∈ Qh,i.

Similar to (2.5), we have the identity

(R−1
h wh,wh) = inf

( N∑
i=1

A(vi, vi) +
N+M∑
i=N+1

(∇pi,∇pi)

)
.

Here vi ∈ Qh,i, i = 1, . . . , N , ∇pi ∈ Qh,i, i = N + 1, . . . , N + M and the infimum is
taken over all such decompositions of wh. It follows from the limited overlap of nodal
basis functions that

(4.1) A(wh,wh) ≤ C(R−1
h wh,wh).

Now if wh = vh +∇ph and we decompose vh =
∑N

i=1 vi and ph =
∑N+M

i=N+1 pi then we
get

(4.2) (R−1
h wh,wh) ≤ c h−2(‖vh‖2

0 + ‖ph‖2
0).

5. The main theorem

We prove the main theorem estimating the condition number of the preconditioned
system corresponding to the proposed two-level method in this section. We start
with the following theorem proved in [15]. Its proof was based on the decomposition
(cf. [12, 18]) of functions in H0(Ω; curl) into a function in H1

0(Ω) and a gradient of a
function in H1

0 (Ω).

Theorem 5.1. A function uh ∈ Qh can be decomposed as

(5.1) uh = vh + ΠQ
h zh +∇ph ,

where vh ∈ Qh, zh ∈ Sh, ph ∈ Sh satisfy

h−1‖vh‖0 + ‖zh‖1 + ‖∇ph‖0 ≤ C ‖uh‖H(Ω;curl)

Using the above theorem and earlier results, we get our main result.

Theorem 5.2. There are constants c and C independent of h satisfying

c1A(u,u) ≤ A(B̃hAhu,u) ≤ c2A(u,u), for all u ∈ Qh.

Proof. The above inequality is equivalent to

(5.2) c−1
2 A(uh,uh) ≤ (B̃−1

h uh,uh) ≤ c−1
1 A(uh,uh) for all uh ∈ Qh.

For the first inequality, we have

A(vh,vh) ≤ 2(A(wh,wh) + A(ΠQ
h vH ,ΠQ

h vH))

where we have decomposed vh as in (2.5). The first inequality in (5.2) then follows
from (4.1) and Corollary 3.1.

For the other direction, we start from the decomposition (5.1). We note that one
can choose zH ∈ SH and pH ∈ SH such that for H ' h,

(5.3)
h−1‖zh − zH‖0 + ‖zH‖1 ≤ C‖zh‖1 ,
h−1‖ph − pH‖0 + ‖pH‖1 ≤ C‖ph‖1 .
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We illustrate the case of pH as that of zH is identical. Let Ω̄H = ∪T , T in the H-
mesh, T ∩ Ω 6= 0. Let p̃H denote interpolant of ph (extended by zero outside of Ω)
with respect to the extended H-grid on Ω̄H . We define pH to be p̃H on the interior
vertices of ΩH and set pH(vi) = 0 on the vertices of ∂ΩH . Now (3.3) holds with h
and H interchanged (using the extended H-mesh). Thus, by the triangle inequality,
(5.3) will follow if we show that

h−1‖p̃H − pH‖0 + ‖p̃H − pH‖1 ≤ C‖p̃H‖1,Ω̄H
.

Note that p̃H − pH lives on the H-elements which intersect ∂ΩH and p̃H vanishes on

∂Ω̄H . Let {ϕ(H)
i } be the standard nodal piecewiese linear basis functions associated

with the extended TH mesh. Then,

p̃H − pH =
∑

vi∈∂ΩH

p̃H(vi)ϕ
(H)
i .

The above sum is taken over vertices vi on ∂ΩH . Then, since p̃H vanishes on ∂Ω̄H it
is clear that for the strip formed by the H-elements bordering ∂ΩH one has,

h−2‖p̃H − pH‖2
0 + ‖p̃H − pH‖2

1 = h−2‖p̃H − pH‖2
0, strip + ‖p̃H − pH‖2

1, strip

≤ CH
∑

vi∈∂ΩH

p̃H(vi)
2 ≤ C‖p̃H‖2

1, strip.

We then write

uh = vh + ΠQ
h (zh −ΠQ

HzH) +∇(ph − ΠS
hpH) + ΠQ

h uH ,

where uH = ΠQ
HzH +∇pH .

Using (5.3) with (3.3) gives

(5.4) ‖ph − ΠS
hpH‖0 ≤ Ch ‖∇ph‖0 ≤ Ch‖uh‖H(Ω;curl).

We next bound the term ΠQ
h (zh −ΠQ

HzH). The problem is that we do not know

that ΠQ
h is stable in L2(Ω) when applied to such a function. Set C to be the mean

value of zh on K̂ if K̂ ∩ ∂Ω = ∅, otherwise, set C = 0. As in (3.2),

‖zh −C‖0, bK ≤ Ch‖zh‖1, bK .

Then,

‖ΠQ
h (zh −ΠQ

HzH)‖0,K = ‖ΠQ
h (zh −C) + ΠQ

h ΠQ
H(zH −C)‖0,K

≤ C

(
‖zh −C‖0, bK + ‖ΠH

Q (zH −C)‖0, bK
)

where we used the triangle inequality, (3.5) and Theorem 3.1 for the last inequality
above. Now, zh−C is a continuous piecewise polynomial on the H-mesh (and vanishes

on ∂Ω when K̂ ∩ ∂Ω 6= ∅) so it follows that

‖ΠH
Q (zH −C)‖0, bK ≤ C‖zH −C‖0, bK ≤ ‖zH − zh‖0, bK + ‖zh −C‖0, bK .

Combining the above estimates with limited overlap gives

‖ΠQ
h (zh −ΠQ

Hzh)‖0 ≤ Ch‖zh‖1 ≤ Ch‖uh‖H(Ω;curl).
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Finally,
‖uH‖H(Ω;curl) ≤ CA(uh,uh)

follows from the triangle inequality, (3.6), (5.3) and Theorem 5.1.
The theorem follows from (2.5) and (4.2) taking uH as above and wh = vh +

ΠQ
h (zh −ΠQ

HzH) +∇(ph − ΠS
hpH). �

Remark 5.1. The above proof actually showed that the component uH can be chosen
as an image of zH (under ΠQ

H) from the H1–conforming space SH plus a gradient
of a function in SH . This fact allows us to derive stable multilevel decompositions
based only on conforming finite element functions defined on a hierarchy of meshes
THk

, k = 1, 2, . . . , J . Here the finest auxiliary mesh TH corresponds to H = HJ .
Moreover, the components of the decomposition can be chosen so that they vanish
on ∂Ω. Details about such H1–conforming multilevel decompositions based on nested
spaces are found in Section 6 of [4]. Exploring this fact can lead to a proof of the
optimal convergence of the multilevel method using the Hiptmair smoother, resulting
from nested Nédélec spaces QHk

, k = 1, 2, . . . , J , supported in Ω. Further details
will not be presented here. We only illustrate the performance of such a multilevel
method in Section 7.

6. Proof of Theorem 3.1

6.1. Commutativity. Here we consider only lowest order spaces (r = 0) Sh, Qh,
Rh and their counterparts with indices H. The techniques extend easily to higher
order spaces. In what follows, τ and n (possibly with subscripts) will denote unit
tangential directions along edges and unit normal vectors to faces, respectively, in the
tetrahedral meshes.

Since functions in SH are continuous, the operator ΠS
h is well defined there. The

degrees of freedom for ΠQ
h involve integrals of the tangential components along edges

of the mesh Th. These integrals are obviously well defined for edges which are not
tangent to any face of TH as functions in QH are piecewise polynomial on such an
edge with only point discontinuities. The integrals are well defined along edges when
they are tangent to faces of TH because the tangential component of a function in
QH is continuous there. Similar arguments show that ΠR

h is well defined on RH .

Let u be in SH . To check that ∇ΠS
hu = ΠQ

h∇u we need only check that they have
the same degrees of freedom since they are both in Qh. Consider an edge ` in the
mesh Th with end points v1 and v2 and let τ ` be a unit vector pointing from v1 to v2.
One has, ∫

`

∇
(
ΠS

hu
)
· τ ` ds = (ΠS

hu)(v2)− (ΠS
hu)(v1) = u(v2)− u(v1),

while ∫
`

ΠQ
h (∇u) · τ `ds =

∫
`

∇u · τ ` ds =
∑

KH∩`

∫
`∩KH

∇u · τ ` ds

=
∑

[w1,w2]=KH∩`

(u(w2)− u(w1)) = u(v2)− u(v1).
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We used the fact that u is continuous and that ` can be represented as a connected
path of line segments [w1, w2] = KH ∩ `.

We check next that ∇ ×ΠQ
h u and ΠR

h (∇ × u) have the same degrees of freedom
(in Rh) for u ∈ QH . Stokes’ Theorem gives that for any face F of the mesh Th,∫

F

(
∇×ΠQ

h u
)
· n dx =

∫
∂F

ΠQ
h u · τ ds =

∫
∂F

u · τ ds.

On the other hand, by the definition of ΠR
h , one has,∫

F

(ΠR
h (∇× u)) · n ds =

∫
F

(∇× u) · n ds

=
∑

F∩KH

∫
F∩KH

(∇× u) · n ds

=
∑

F∩KH

∫
∂(F∩KH)

u · τ ds

We split the above boundary integrals into integrals along edge segments along the
boundary of F and interior segments. Using the fact the u · τ is continuous on any
interior edge segment, it is clear that each such segment results in two canceling
contributions. Thus, ∫

F

(ΠR
h (∇× u)) · n ds =

∫
∂F

u · τ ds

showing that ∇×ΠQ
h u and ΠR

h (∇×u) have the same degrees of freedom. This shows
the commutativity properties claimed by Theorem 3.1.

6.2. L2–stability of ΠS
h , ΠQ

h and ΠR
h on SH, QH and RH. Consider first ΠS

h . Let
{xi} and {vi} denote, respectively, the vertices of Th and TH . Let TH(xi) denote a
tetrahedron of TH containing xi. For vH ∈ SH , by quasi-uniformity,

‖ΠS
hvH‖2

0 ≤ Ch3
∑
xi

vH(xi)
2

≤ Ch3
∑
xi

∑
vj∈TH(xi)

vH(vj)
2 ≤ C‖vH‖2

0.

For the last inequality above, we used the fact that there are at most a fixed number
(independent of h) of vertices from the h mesh in any element of the H mesh.

Consider next ΠQ
h . Let K be a tetrahedron of Th and BK denote the Jacobian

of the affine transformation FK which maps the reference tetrahedron K onto K.
The restrictions of functions in ΠQ

h to the element K are mapped to functions in the
Nédélec space on the reference element by the transformation

v → Bt
K(v ◦ FK).
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Moreover the degrees of freedom are mapped according to the formula

(ΠQ
h v) ◦ FK = B−t

K Π
Q
(Bt

K(v ◦ FK)).

Here Π
Q

denotes the Nédélec interpolation operator on the reference element. The
following norm equivalences are a consequence of the equivalence of norms on the
reference space and scaling arguments:

‖uh‖L∞(K) '
( 6∑

i=1

(uh(vi) · τ i)
2

)1/2

' h−3/2‖uh‖0,K .

Here we have used the notation ' to denote norm equivalence with constants inde-
pendent of h. Also, vi is the center of the i’th edge ei of K and τ i is the unit vector
tangent to ei.

Given uH ∈ QH , one has,

‖ΠQ
h uH‖2

0,K ' h3

6∑
i=1

 1

|`i|

∫
`i

uH · τ i ds

2

.

Moreover,
1

|`i|

∫
`i

|uH · τ i| ds =
1

|`i|
∑

`i∩KH

∫
`i∩KH

|uH · τ i| ds

≤
∑

`i∩KH

‖uH‖L∞(KH).

Since the number of elements KH intersecting `i is bounded, one gets

‖ΠQ
h uH‖2

0,K ≤ Ch3
∑

`i∩KH

‖uH‖2
L∞(KH)

≤ Ch3‖uH‖2
L∞( bK)

≤ C‖uH‖2
0, bK .

The L2–stability of ΠQ
h follows by summation. The proof of the L2–stability of ΠR

h

is similar.

Remark 6.1. The above proofs can be easily extended to other piecewise-polynomial
spaces. For example, if VH is a discrete space where ΠQ

h is well defined, then there
exists C > 0 such that

‖ΠQ
h uH‖0 ≤ C ‖uH‖0

for any uH ∈ VH .

7. Numerical experiments

In this section we present numerical results from experiments with different versions
of the two-level preconditioner applied to the problem for u ∈ Qh, such that for a
given f ∈ L2(Ω),

(u, v) + (∇× u, ∇× v) = (f , v), for all v ∈ Qh.
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Specifically, we considered:

(1) The multiplicative version of the preconditioner (2.2) with BH being a V (1, 1)
cycle of geometric multigrid (with Hiptmair smoothing) on the auxiliary mesh.

(2) The additive preconditioner (2.2) with geometric multigrid on the auxiliary
mesh.

(3) The multiplicative preconditioner with exact solve on the auxiliary mesh.

(4) The additive preconditioner with exact solve on the auxiliary mesh (B̃h).

In all experiments we used the lowest order Nédélec space for computing the entries of
Ah and F , with a right-hand side 1 and homogeneous boundary conditions. We also
employed the multiplicative version of the Hiptmair smoother. The auxiliary mesh
was chosen to be uniform, for the efficiency reasons addressed in Subsection 8.2.

We first present results in two dimension (see Subsection 8.1 for details). We chose
two initial meshes on the unit square and used uniform refinement to generate larger
problems, as shown in Figure 2. The refinement levels were synchronized such that
the mesh size ratio is kept at approximately 1.06.

Figure 2. Initial mesh on the unit square (left), initial auxiliary mesh
(center), and the composition of the two meshes after refinement (right).

Results of the preconditioned conjugate gradient iteration using the two-level pre-
conditioners are reported in Table 1. The iterations were stopped after the norm of
the initial residual was reduced by six orders of magnitude. The empty spots indicate
that the execution time was too long. We use the following notation: ` is the refine-
ment level of Th, N is the size of the problem in Qh. The same quantities for the
auxiliary mesh are denoted with `aux and Naux. In the last four columns we report
the iteration count for each of the two-level preconditioners (1)-(4).

The results in Table 1 confirm that both the multiplicative and the additive ver-
sions lead to solution methods with bounded number of iterations. The additive
preconditioner requires approximately twice as many iterations (but it is cheaper to
compute). Another interesting observation is that using multigrid instead of exact
solver on the auxiliary mesh, in both cases, leads to almost no increase in the number
of iterations.

Next, we repeat the same experiment on an unstructured mesh on the unit cube,
shown in Figure 3. As before, we refine both meshes, keeping the mesh size ratio at
approximately 1.07.
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` N `aux Naux n1 n2 n3 n4

0 62 2 56 4 8 3 8
1 232 3 208 4 9 4 9
2 896 4 800 4 9 4 9
3 3520 5 3136 4 9 3 8
4 13952 6 12416 4 8 3 8
5 55552 7 49408 4 8 3 7
6 221696 8 197120 4 7 3 7
7 885760 9 787456 4 7
8 3540992 10 3147776 4 7

Table 1. Numerical results for the problem on the unit square.

Figure 3. Initial mesh on the unit cube (left) and initial auxiliary
mesh (right).

The behavior of the two-level preconditioners is presented in Table 2 and is similar
to the two dimensional case.

` N `aux Naux n1 n2 n3 n4

0 722 2 604 4 9 4 9
1 5074 3 4184 5 10 4 10
2 37940 4 31024 6 16 5 16
3 293224 5 238688 6 16 6 15
4 2305232 6 1872064 6 16

Table 2. Numerical results for the problem on the unit cube.

Again, we have a bounded number of iterations, with the additive count being
approximately twice larger. As in Table 1, using multigrid instead of exact solve
increases the number of iterations, at most, by one.
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In the next set of examples, we allow for the auxiliary mesh to be defined on a
domain ΩH , that differs from the original domain Ω. This situation is of practi-
cal interest, since it allows for a problem defined on a very complicated mesh to be
preconditioned by geometric multigrid on a box. Similar approaches for second or-
der elliptic problems have been known as “fictitious” domain, or domain embedding
methods and can lead to optimal multigrid preconditioners, see [20].

To demonstrate the algorithm, we set to precondition our discrete problem posed
on a simple triangular domain, by using the uniform auxiliary mesh from our first
experiment. On each refinement level, we define ΩH by removing all elements of the
auxiliary mesh that are not inside Ω. The process is illustrated in Figure 4. Since
ΩH ⊂ Ω, we get a sequence of nested auxiliary subspaces of H0(Ω; curl), for which we
define our geometric multigrid preconditioner (based on Hiptmair smoothing). One
simple way to implement this in practice is to eliminate all degrees of freedom cor-
responding to the removed elements from the stiffness matrices and all interpolation
and smoothing operators.

Figure 4. Initial mesh on the triangular domain and two auxiliary
meshes inscribed in it.

The results for the so defined non-matching auxiliary mesh preconditioner are listed
in Table 3. One observes that the number of iterations is larger than in the previous
2D experiment, but it eventually stabilizes. Compared to the earlier results, the gap
between the two-level and the multigrid methods is larger.

` N `aux Naux n1 n2 n3 n4

4 800 4 800 10 17 8 16
5 3136 5 3136 11 19 8 16
6 12416 6 12416 12 20 8 16
7 49408 7 49408 12 20 7 15
8 197120 8 197120 13 20 7 14
9 787456 9 787456 13 20
10 3147776 10 3147776 13 20

Table 3. Numerical results for the problem on the triangular domain.
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Our last test is a non-matching auxiliary mesh example in 3D where Ω is the
reference tetrahedron, with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1), split into
eight elements. We used the uniform auxiliary mesh from the second example. The
two meshes were refined such that the mesh size ratio on each level is approximately
1.10. The initial mesh and two auxiliary meshes ΩH are shown in Figure 5.

x y

z

x y

z

x y

z

Figure 5. Initial mesh on the tetrahedral domain and two auxiliary
meshes inscribed in it.

The numerical results in Table 4 suggest that, as with the previous test, the non-
matching auxiliary mesh preconditioner requires more iterations and more refinement
levels to exhibit its asymptotic behavior. In this case, the multiplicative methods
performed significantly better than the additive ones. Finally, while the two level
methods seem to be optimal, the number of iterations for the first two preconditioners
are slightly increasing.

` N `aux Naux n1 n2 n3 n4

2 804 2 604 10 20 10 20
3 5576 3 4184 14 33 13 32
4 41360 4 31024 16 40 14 37
5 318240 5 238688 18 45 14 40
6 2496064 6 1872064 19 46

Table 4. Numerical results for the problem on the reference tetrahedron.

8. Concluding Remarks.

8.1. Two dimensional problems. Even though we concentrated on the 3D case,
the theory of the preceding sections can be modified such that the results hold for
two dimensional problems. Below we outline how this can be done.

Assume that Ω is a convex polygonal domain, discretized with a triangular mesh.
One defines H(Ω; curl) as

H(Ω; curl) = {u⊥ : u ∈ H(Ω; div)} ,
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where u⊥ = (−u2, u1) is the π
2

rotation of the vector field u = (u1, u2). Furthermore,

∇×u⊥ is defined to be ∇·u, and the Nédélec space Qh keeps its definition provided
we consider x ∈ R2. The properties of the Hiptmair smoother are well known in 2D.
The stable decomposition (5.1) also holds in this case, see [15]. Thus, the proof of
Theorem 5.2 needs no changes, as long as the estimate

(8.1) ‖∇ ×ΠQ
h u‖0 ≤ C‖∇ × u‖0

from Corollary 3.1 is available.
Since the right half of the commuting diagram (3.1) is defined only in 3D, we prove

the above estimate directly. Fix K ∈ Th and u ∈ QH . Then∫
K

∇×ΠQ
h u dx =

∫
∂K

ΠQ
h u · τ ds =

∫
∂K

u · τ ds =

∫
K

∇× u dx .

For the lowest order Nédélec space, ∇×ΠQ
h u is a constant in K, so

‖∇ ×ΠQ
h u‖2

0,K =
1

µ(K)

(∫
K

∇× u dx

)2

≤ ‖∇× u‖2
0,K ,

where µ(K) is the measure of K. This completes the proof of (8.1), and therefore we
can conclude that our main results hold in two dimensions.

8.2. Efficient implementation of ΠQ
h . The only non-standard part of the solution

algorithm is the computation of the matrix representation of ΠQ
h . This requires that

for every basis function ϕ of QH one evaluates and stores the integrals
∫

`
ϕ · τ l ds

over all edges ` of Th. In order to keep optimal complexity, this has to be done only
for the integrals that are not zero, i.e. only for edges ` belonging to elements in Th

which intersect the support of ϕ. Thus, an efficient implementation requires that we
have a relation table, AuxElement Element, which for each (auxiliary) element in
TH gives the list of elements in Th that intersect it. In practice, it might be easier
to construct the above relation table (implemented as a boolean sparse matrix, for
example) as the transpose of the similar Element AuxElement. In particular,
if the auxiliary mesh is uniform, one can directly enumerate all auxiliary elements
intersecting, e.g., the bounding box of a given element in Th, since the auxiliary
vertices form a simple lattice. If the auxiliary mesh is not uniform, the computation
of AuxElement Element becomes much more involved, and should probably be
incorporated in the mesh generation process, in order to achieve optimal complexity.
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